The Actin-Driven Movement and Formation of Acetylcholine Receptor Clusters
نویسندگان
چکیده
A new method was devised to visualize actin polymerization induced by postsynaptic differentiation signals in cultured muscle cells. This entails masking myofibrillar filamentous (F)-actin with jasplakinolide, a cell-permeant F-actin-binding toxin, before synaptogenic stimulation, and then probing new actin assembly with fluorescent phalloidin. With this procedure, actin polymerization associated with newly induced acetylcholine receptor (AChR) clustering by heparin-binding growth-associated molecule-coated beads and by agrin was observed. The beads induced local F-actin assembly that colocalized with AChR clusters at bead-muscle contacts, whereas both the actin cytoskeleton and AChR clusters induced by bath agrin application were diffuse. By expressing a green fluorescent protein-coupled version of cortactin, a protein that binds to active F-actin, the dynamic nature of the actin cytoskeleton associated with new AChR clusters was revealed. In fact, the motive force generated by actin polymerization propelled the entire bead-induced AChR cluster with its attached bead to move in the plane of the membrane. In addition, actin polymerization is also necessary for the formation of both bead and agrin-induced AChR clusters as well as phosphotyrosine accumulation, as shown by their blockage by latrunculin A, a toxin that sequesters globular (G)-actin and prevents F-actin assembly. These results show that actin polymerization induced by synaptogenic signals is necessary for the movement and formation of AChR clusters and implicate a role of F-actin as a postsynaptic scaffold for the assembly of structural and signaling molecules in neuromuscular junction formation.
منابع مشابه
Actin at receptor-rich domains of isolated acetylcholine receptor clusters
Acetylcholine receptor (AChR) clusters of cultured rat myotubes, isolated by extraction with saponin (Bloch, R. J., 1984, J. Cell Biol. 99:984-993), contain a polypeptide that co-electrophoreses with purified muscle actins. A monoclonal antibody against actin reacts in immunoblots with this polypeptide and with purified actins. In indirect immunofluorescence, the antibody stains isolated AChR c...
متن کاملRole of the cytoskeleton in the formation, stabilization, and removal of acetylcholine receptor clusters in cultured muscle cells
We have examined the effects of microtubule- and microfilament-disrupting drugs on the stability, formation, and removal of acetylcholine (ACh) receptors and ACh receptor clusters on the surface of aneurally cultured chick embryonic myotubes. (a) In muscle cell cultures, cytochalasin D (0.2 microgram/ml) or B (2.0 micrograms/ml) causes the dispersal of 50-60% of the existing clusters over a 24-...
متن کاملMechanism of Acetylcholine Receptor Cluster Formation Induced by DC Electric Field
BACKGROUND The formation of acetylcholine receptor (AChR) cluster is a key event during the development of the neuromuscular junction. It is induced through the activation of muscle-specific kinase (MuSK) by the heparan-sulfate proteoglycan agrin released from the motor axon. On the other hand, DC electric field, a non-neuronal stimulus, is also highly effective in causing AChRs to cluster alon...
متن کاملMembrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons.
Calcium-permeable neurotransmitter receptors are concentrated into structurally and biochemically isolated cellular compartments to localize calcium-mediated events during neurotransmission. The cytoplasmic membrane contains lipid microdomains called lipid rafts, which can gather into microscopically visible clusters, and thus the association of a particular protein with lipid rafts can result ...
متن کاملT cell receptor microcluster transport through molecular mazes reveals mechanism of translocation.
Recognition of peptide antigen by T cells involves coordinated movement of T cell receptors (TCRs) along with other costimulatory and signaling molecules. The spatially organized configurations that result are collectively referred to as the immunological synapse. Experimental investigation of the role of spatial organization in TCR signaling has been facilitated by the use of nanopatterned-sup...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 150 شماره
صفحات -
تاریخ انتشار 2000